College: S. S. College, Jehanabad Department: Physics Class: B.Sc. Part-I Subject: Thermodynamics/Assignment Teacher: Mr M. K. Singh Last date of assignment submission: 15.05.2020. Mode of submission: Online through Google Form *Test is online available on GOOGLE CLASS ROOM with code ccoefti*

Information regarding physics department is available on WhatsApp group. To join WhatsApp group click on link provided below https://chat.whatsapp.com/HrTJ8s8ZwNHEG0plE7SAFM

This test is for B.Sc(H) Physics, Part I students. For each question four options are available. Only option is correct. * Required

1. Email address *

2. Name

- 3. College Roll Number
- 4. Admission Year

Mark only one oval.

2018

- 2019
- 5. 1. What remains constant in the isothermal process?

1 point

Mark only one oval.

Pressure
 Volume
 Temperature
 Heat

6.	2. In adiabatic process energy is not exchanged.	1 point
	Mark only one oval.	
	 Heat Kinetic Mechanical Potential 	
7.	3.The process in which volume remains constant.	1 point
	Mark only one oval.	
	Isobaric	
	Isochoric	
	Adabatic	
	Isothermal	
8.	4. First law of thermodynamics can be expressed as	1 point
	Mark only one oval.	
	\bigcirc dQ = dU + dW	
	Ub = Ub	
	\bigcirc dU = dQ+ dW	
	\bigcirc dQ = dU - dW	

9. 5. An engine working between 800K and 400K then what is efficiency of 1 point engine?

Mark only one oval.

50%
55%
45%
52%

10. 6. If 400 joules of energy is absorbed by a working substance at a lower 1 point temperature and 200 joules of work is done on it by an external agency then find its co efficient of performance.

Mark only one oval.

200%	
155%	
245%	
152%	

11. 7. Heat Capacity can be represented as

1 point

- Ratio of change in temperature to change in heat
- Ratio of change in pressure to change in temperature
- Ratio of change in heat to change in temperature
- Ratio of change in volume to change in temperature

12. 8. Find the efficiency of Carnot's engine working between steam point 1 point and ice point. *

Steam point of water is 100 C and ice point is 0C.

Mark only one oval.

13. 9. Two Carnot engines E1 and E2 are coupled together. The engine E1 1 point draws heat from the source at 1200 K and rejects to a reservoir at temperature T K. The engine E2 receives the heat rejected by E1 and in turn rejects to another reservoir at temperature 300K. What is the value of T if the work outputs of both the engines are equal?

Mark only one oval.

700 K
750K
650K
600K

14. 10. Find the efficiency of Carnot engine working between 127 C and 27 C. 1 point It absorbs 80 calories of heat. How much heat is rejected.

Mark only one oval.

16. 12. An Engine whose temperature of source is 400 K takes 200 calories of 1 point heat and rejects 150 calories of heat to the sink. What is temperature of sink?

Mark only one oval.

- 350
 300
 450
 400
- 17. 13. Efficiency of Carnot's engine isT1 is temperature of source and T2 is temperature of sink

1 point

10.	14. Coefficient of performance is defined as	1 point
	Mark only one oval.	
	Q2 /(Q1-Q2)	
	Q2/Q1	
	(Q1-Q2) /Q2	
	() 1 - (Q1 / Q2)	
19.	15. The first law of thermodynamics is a statement of	1 point
	Mark only one oval.	
	Conservation of Energy	
	Conservation of work	
	conservation of momentum	
	() conservation of energy	
20.	16. If heat is supplied to an ideal gas in an isothermal process	1 point
20.	16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval.	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase 	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work 	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work 	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 17. In carnot cycle, the first step is:	1 point 1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 17. In carnot cycle, the first step is: Mark only one oval.	1 point 1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 17. In carnot cycle, the first step is: Mark only one oval. Isothermal expansion	1 point 1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 17. In carnot cycle, the first step is: Mark only one oval. Isothermal expansion Isothermal compression 	1 point
20.	 16. If heat is supplied to an ideal gas in an isothermal process Mark only one oval. the internal energy of gas will increase the gas will do positive work the gas will do negative work the said process is not possible 17. In carnot cycle, the first step is: Mark only one oval. Isothermal expansion Isothermal compression Adiabatic expansion 	1 point

22. 18. The efficiency of a Carnot engine is 0.4. If the temperature of the sink 1 point is 27 degree Celsius, the temperature of source is (in degree Celsius)

Mark only one oval.

23. 19. The gas law (PV) /T =Constant is true for

Mark only one oval.

isothermal change only

adiabatic change only

both isothermal and adiabatic change

none of these

24. 20. Internal energy of gas depends upon

Mark only one oval.

Temperature

Volume of gas

pressure of gas

size of molecule

1 point

1 point

25. 21. Reversible heat engine can be 100 % efficient, if the temperature of 1 point sink is

Mark only one oval.

- less than that of source
- equal to that of source
- 0 degree Celsius

🔵 0 К

26. 22. The physics underlying the working of a refrigerator closely resembles 1 point the physics underlying

Mark only one oval.

- ice formation
- Heat engine
- Vapour compression
- vaporization of water
- 27. 23. The door of running refrigerator inside a room is left open. Mark the 1 point correct statement

- the room will be cooled slightly
- _____ the room will be warmed up gradually
- _____ the room will be cooled to the temperature inside the refrigerator
- _____ the temperature room will remain unaffected

1 point

Mark only one oval.

W= (P1 V1 - P2 V2)* (1/(1-Y))
 W= (P1 V1 - P2 V2)* (1/(Y - 1))
 W = R (T2 - T1)
 W= RT1 log (V2/V1)

29. 25. Under adiabatic conditions, a certain mass of gas at NTP is expanded 1 point to three times its volume. Calculate the resulting temperature. Given Initial temperature T = 273 K and Y=1.4

Mark only one oval.

- (176 K
- (170 K
- _____ 100 K
- 🔵 188 K
- 30. 26. In a reversible adiabatic process, entropy

1 point

- increases
- remains unchanged
- decreases
- none of these

0	mernodynamics	
31.	27. The change in entropy of amole of an ideal gas, when the gas undergoes free expansion is	1 point
	Mark only one oval.	
	opsitive	
	Zero	
	negative	
	none of the above	
32.	28. Entropy remains constant in	1 point
	Mark only one oval.	
	adiabatic process	
	isothermal process	
	isochoric process	
	isolated process	
33.	29. The entropy of a system in an irreversible process	1 point
	Mark only one oval.	
	increase	
	decreases	
	remain constant	
	none of the above	
34.	30. The unit of entropy is	1 point
	Mark only one oval.	
	Joule/Kelvin	
	Kelvin	

None of the above

20	Thermodynamics	
35.	31. A piece of ice is added to water in a cup. The energy is	1 point
	Mark only one oval.	
	increased	
	decreased	
	undergoes no change	
	sometimes increase and sometimes decrease	
26		
30.	32. When water vapour condenses into water, its entropy	1 point
	Mark only one oval.	
	increases	
	decreases	
	remains unchanged	
	first increases and then decreases	
37.	33. Entropy is a measure of	1 point
071		i politi
	Mark only one oval.	
	perfect order	
	available energy	
	disorder	
	none of the above	
20	24. Esternu is maximum is which state	
38.	34. Entropy is maximum in which state	1 point
	Mark only one oval.	
	solid	
	liquid	
	gas	

) can be any form of matter

39.	35. In a natural process entropy	1 point
	Mark only one oval.	
	increases	
	decreases	
	remains the same	
	none of the above	
40.	36. Net entropy change of a system in Carnot's cycle	1 point
	Mark only one oval.	
	zero	
	positive	
	negative	
	more than 1	
41.	37. Which of the following represents a reversible process?	1 point
		. point
	Mark only one oval.	
	ds<0	
	ds = 0	
	ds >0	
	none of these	
42.	38. In the two gases at the same temperature	1 point
	Mark only one oval.	
	the average kinetic energy per molecule is equal	
	the internal energy is equal	
	the entropy is equal	
	none of these	

 43. 39. What will be changed in entropy when 5 kg of water at 100-degree 1 point Celsius is converted into steam at the same temperature.
 Given Latent heat of steam = 540 cal/gram

Mark only one oval.

44. 40. What will be changing in entropy when 10 kg of water at 100 degrees 1 point Celcius changes to vapour

Mark only one oval.

- _____ 14477 cal/K
- 1500 cal/K
- 1400 cal/K
- 🔵 1542 cal /K

This content is neither created nor endorsed by Google.

